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Abstract. Numerical models in atmospheric sciences do not only need to approximate the flow equations on a suitable com-

putational grid, but they also include subgrid effects of many non-resolved physical processes. Among others, the formation

and evolution of cloud particles is an example of such subgrid processes. Moreover, to date there is no universal mathematical

description of a cloud, hence many cloud schemes were proposed and these schemes typically contain several uncertain pa-

rameters. In this study, we propose the use of algorithmic differentiation (AD) as a method to spot parameters within the cloud5

scheme, to which the output of the cloud scheme is most sensitive. We illustrate the methodology by analyzing a scheme for

liquid clouds, incorporated into a parcel model framework. Since the occurrence of uncertain parameters is not limited to cloud

schemes, the AD methodology may help to spot the most sensitive uncertain parameters in any subgrid scheme and therefore

help limiting the application of Uncertainty Quantification to the most crucial parameters.

1 Introduction10

Modelling the atmosphere is a highly nontrivial task due to the multiscale and multicomponent nature of the atmospheric flow,

where multiple physical processes on different length and timescales interact simultaneously (Orlanski, 1975). One particular

result of the interaction of such processes is regularly observed in the sky: clouds appear and disappear. The evolution of a

cloud (see, e.g., Lamb and Verlinde, 2011) starts on the lengthscale of a few nanometers, where aerosol particles get wetted

by the ambient water vapor leading to the formation of haze particles. If thermodynamic conditions are fulfilled, i.e. the15

(relative) humidity is large enough, the haze particles grow further to become cloud droplets with typical diameters of about

10µm− 30µm. Collisions of the cloud droplets eventually lead to rain drops with sizes even larger than 100µm. Due to their

weight, rain drops fall out of the cloud and form precipitation. Since all phase transitions are connected to the release or

consumption of latent heat, the formation and evaporation of a cloud can affect the ambient atmospheric flow by modifying the

local buoyancy (see, e.g., Cotton et al., 2010). However, all aforementioned cloud processes are microphysical processes and20

not resolved in numerical models, in particular not in the operational models used for weather forecasts. In these models, the

cloud itself is not resolved and instead considered as a subgrid process, calling for a representation of the impact of the clouds

by using so-called “parameterizations” or “cloud schemes” (see, e.g., Khain et al., 2000). These schemes take the values of the

resolved fields as input and compute the feedback of the unresolved process as an output.
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In the literature, many cloud schemes are formulated as one- or two-moment schemes, predicting the mass mixing-ratio and,

in case of a two-moment scheme, also the number concentration of the cloud species considered in the scheme (Khain et al.,

2015), e.g. the number of cloud droplets per unit mass of dry air. However, at the moment no universal governing equation is

available to describe the evolution of a cloud across all involved scales, explaining the existence of different formulations of

the cloud processes. In addition, cloud schemes typically contain parameters with uncertain values, which may be introduced5

by artificial parameters or limited observational evidence of the precise value. In any case, uncertain parameters introduce

uncertainty in the cloud scheme at hand, and ultimatively into the numerical model as a whole. To assess the uncertainty of

the parameters, one usually performs sensitivity studies, e.g. by running ensemble simulations, where each ensemble member

employs slightly different values for the parameters. However, usually the number of ensemble members is limited to small

values posing an additional challenge to extract the desired signal from the simulations.10

In this study, we propose the use of “algorithmic differentiation” (AD) as another way of spotting the parameters with largest

sensitivity. Although this method is well-known in computer science and engineering, it is largely unused in meteorological

contexts apart from individual studies investigating (model) sensitivities, mostly by using adjoint models (e.g. Bischof et al.,

1996; van Oldenborgh et al., 1999; Kaminski et al., 1999; Xiao et al., 2008; Rauser et al., 2010; Zhang et al., 2013; Belikov

et al., 2016) or studies targeting at applications in data assimilation (e.g. Le Dimet et al., 2002; Blessing et al., 2014). We will15

introduce the technique in Section 2, but, in a nutshell, it provides the derivative of a given computer code with respect to

selected parameters. A cloud scheme may be described as a function f , taking the flow characteristics y from the given gridbox

as well as parameters η as an input, and computing the feedback z of the cloud, i.e. z = f(y, η), as an output. Assessing the

sensitivity of the output z with respect to the parameters η amounts to computing the derivative dz
dη . AD helps in evaluating

this derivative by computing the derivative of the function f̂ with respect to the parameters, where the hat-notation indicates20

the implemented version of the mathematical function f in some computer code. Using this technique can help in the devel-

opment of cloud schemes by providing the respective derivatives to machine accuracy in an automated fashion, i.e. without

implementing finite difference approximations of f̂ .

Recently, a field called “Uncertainty Quantification” emerged in mathematics as a more systematic combination of (numer-

ical) analysis and statistics in order to study the propagation of uncertainties (e.g., Sullivan, 2015; Le Maître and Knio, 2010).25

Although powerful methods for the investigation of uncertainties already exist, their practical use often limits the number of the

considered uncertain parameters due to the curse of dimensionality, see Chertock et al. (2019) for an application in the context

of cloud physics. Therefore, it is valuable to first identify the parameters with highest sensitivity, to limit a more rigorous or

extensive investigation to only the most relevant. Using AD beforehand allows to identify the most promising parameters.

We emphasize, that AD is not related to a specific application (as a cloud scheme) nor to a specific programming language.30

Although we use an implementation in C++ together with an AD-tool suited for this language, AD-tools for other languages

like Fortran are available (e.g. Bischof et al., 1996). A list can be found on www.autodiff.org.

In this study, we will first explain the concept of algorithmic differentiation in Section 2, introduce the warm cloud scheme

used for illustration purposes within an air parcel framework in Section 3 and show results in Section 4. Some concluding

remarks are given in Section 5.35
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2 What is Algorithmic Differentiation?

Algorithmic differentiation (AD) is a mathematical theory that describes how the computation of derivatives in a computer

program can be automatized. It was developed already in the early 80’s and was rediscovered several times over the past years.

The most known resource is the book of Griewank and Walther (2008). A nice introduction is given by Neidinger (2010).

For the purpose of computing the derivative of a program, it is considered as a sequence of simple elemental (or intrinsic)5

functions that include the sine, cosine, multiplication, division, and addition. The theory of AD then applies the chain rule to

this sequence of elemental functions, which creates a representation of the derivative for the computer program. The forward

mode of AD is the result of applying the directional derivative to this representation. It is important to stress that AD does

not generate a generalized representation of the derivative of the computer program. Instead, AD computes the derivatives

alongside the execution path. The path might change due to conditional instructions within the code.10

As an example, assume the computer program to be differentiated is given by

w = (a+ b) ∗ (c− d), (1)

where a, b, c, d are the input variables and w is the output. This program can now be split into elemental functions which yields

the intermediate steps t1, t2 required by AD:

t1 = a+ b,

t2 = c− d,

w = t1 ∗ t2.

(2)15

For the application of the chain rule the Jacobian matrix has to be computed for each of these intermediate steps which is

quite simple, e.g. for t1 = a+ b the matrix is (1, 1) since ∂t1
∂a = ∂t1

∂b = 1. In order to compute the directional derivative, the

Jacobian matrix is multiplied with the desired direction (ȧ, ḃ)T , where the dot notation is used in the AD theory to describe the

corresponding derivative direction of a variable. Applying this process to the full procedure, the result is

ṫ1 = ȧ+ ḃ,

ṫ2 = ċ− ḋ,

ẇ = t2 ∗ ṫ1 + t1 ∗ ṫ2,

(3)20

since, e.g.,

ṫ1 =
(
∂t1
∂a

,
∂t1
∂b

)
·
(
ȧ, ḃ
)T

= (1, 1) ·
(
ȧ, ḃ
)T

= ȧ+ ḃ. (4)

By computing the corresponding directional derivative statements in procedure (3) alongside the original statements in proce-

dure (2), the directional derivative is computed for the whole computer program (1). Note that the choices (ȧ, ḃ) = (1, 0) and

(ȧ, ḃ) = (0, 1) for the input directions for the AD computation result in the computation of the partial derivatives ∂w
∂a and ∂w

∂b .25

The example shows the application of the forward AD mode on a simple computer program. According to the general theory

of AD, actually all common elemental operations of a programming language are indeed differentiable and the corresponding
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derivatives may be written down explicitly. Note that conditional instructions (e.g. if-else switches) do not pose any problem,

since this only alters the program path, i.e. the specific sequence of elemental instructions which are executed. Since the whole

computer program is a composition of the differentiable elemental operations, the chain rule states that also the whole program

is differentiable. Moreover, if the program is represented by the function f̂ : Rn→ Rm, the so-called forward mode of AD

computes5

ż =
df̂
dx

(x) ẋ. (5)

In Equation (5), df̂
dx (x) is the Jacobian of the full program with initial state x, vector ẋ is the direction, for which the program

derivative is desired along the computational path and x subsumes all input variables. In the notation of Section 1, we have

x= (y, η), i.e. x contains the cloud model and thermodynamic variables y together with the inherent parameters η. In this

terminology, also an inherent parameter of the (cloud) model is now considered as a parameter, if this parameter is to be10

investigated.

Equation (5) just states which result is computed by the forward mode of AD and not how it is computed. The evaluation of

the derivative is done alongside of the primal computation of f̂(x) by applying Equation (5) to each elemental operation as in

the above example, i.e. the full Jacobian is never computed explicitly.

The second operation mode of AD is called the reverse AD mode. As will become clear, the reverse mode can be introduced15

by multiplying an adjoint direction from the left side to the derivative representation of the computer program, instead of

multiplying a derivative direction from the right as in Equation (5). This yields the general equation x̄T = z̄T df̂
dx (x). In AD

lingo, the adjoint for a variable v is denoted with the bar notation as v̄ and may be thought of as containing the immediate

derivative of the current statement with respect to the particular variable. As an example, for the statement v = t1 ∗ t2, the AD

reverse mode evaluation is20

(t̄1, t̄2) = v̄ ·
(
∂v

∂t1
,
∂v

∂t2

)
= v̄ · (t2, t1) = (v̄ · t2, v̄ · t1) . (6)

The information flow in Equation (6) is reversed for the adjoint variables: the input variable is v̄ while t̄1 as well as t̄2 are output

variables. Because of this reversal of the information flow, all reverse AD statements need to be evaluated in the reversed order.

The reverse of the last statement of the program code f̂ will be evaluated first, the second last statement as second, and so on.

The reverse AD procedure for the example procedure (2) is then25

t̄1 = t2 ∗ w̄,

t̄2 = t1 ∗ w̄,

c̄= t̄2,

d̄=−t̄2,

ā= t̄1,

b̄= t̄1.

(7)

4

https://doi.org/10.5194/gmd-2019-140
Preprint. Discussion started: 3 June 2019
c© Author(s) 2019. CC BY 4.0 License.



As discussed above, the statements from procedure (2) are now handled in the reverse order. The values ā, b̄, c̄ and d̄ contain

the derivatives of w with respect to themself. Taking d̄ as an example, according to the chain rule this is

dw
dd

= w̄
dw
dt2

dt2
dd

= w̄ · t1 · (−1) =−t1 · w̄ (8)

and the value of t1 is taken from the primal evaluation of the program. By choosing w̄ = 1 as input for the reverse AD mode,

the adjoint variable d̄ contains the derivative of procedure (2) with respect to the input d.5

The example (7) shows the application of the reverse AD mode on a simple computer program. The general theory of AD

states that for the computer program which can be represented by the function f̂ : Rn→ Rm the reverse mode of AD computes

x̄=

[
df̂
dx

(x)

]T
z̄, (9)

where, again, df̂
dx (x) is the Jacobian of f̂ ,

[
df̂
dx (x)

]T
its transpose and z̄ the desired direction for the derivative.10

The equation again just states which result is computed by the reverse mode of AD and not how it is computed. The actual

evaluation of the derivative is done by storing information during the primal computation of f̂(x). Afterwards, a reverse sweep

over the stored information is done. This reverse sweep applies a slightly modified version of Equation (9) to each elemental

function as in the above example.

Both operation modes of AD are connected via the discrete adjoint operator. Let 〈·, ·〉n and 〈·, ·〉m denote the scalar products15

in Rn and Rm, respectively. We now select an arbitrary direction z̄ ∈ Rm, which we apply to the result of the forward mode.

This yields the equality

〈z̄, ż〉m =

〈
z̄,

df̂
dx

(x) ẋ

〉

m

=

〈[
df̂
dx

(x)

]T
z̄, ẋ

〉

n

= 〈x̄, ẋ〉n

(10)

by shifting the Jacobian matrix of f̂ to the left side of the scalar product. This shows that the reverse mode is the discrete

adjoint of the forward mode (see, e.g., Kalnay, 2003, for the use of adjoint models in atmospheric data assimilation).20

The advantage of the reverse mode becomes clear, if we assume that we want to compute the full gradient of a function

f̂ : Rn→ Rm. In case of m= 1, i.e. a computer program with n input and a single output variable, the full gradient df̂
dx (x)

is a matrix with n columns and one row, hence its transpose is a matrix with n rows and a single column. Since m= 1, the

direction z̄ is a vector with a single entry. Consequently, we obtain the result x̄ by computing (9) exactly once with the single

input z̄ = (1) ∈ R1. Using the forward mode of AD, we infer from (5) that the computation of the full gradient requires n25

subsequent computations with the choices ẋ= e1, ẋ= e2, . . . , ẋ= en and ei ∈ Rn denotes the i-th unit vector. If n is large,

these n subsequent computations require much more computational effort than a single (but slightly more costly) computation

using the reverse mode of AD.
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In contrast, if n= 1, i.e. the computer program has a single input and m output variables, the forward mode of AD com-

putes the full derivative with a single computation by choosing the 1× 1-matrix ẋ= (1), whereas the reverse mode needs m

computations; being costly for large values of m.

An alternative approach to compute the derivative of f̂ : Rn→ Rm in the direction d ∈ Rn is to apply the finite difference

approach5

df̂
dx

(x) · d≈ f̂(x+ td)− f̂(x)
t

(11)

with a (small) stepsize t > 0, requiring two evaluations of the program f̂ . Instead of the approximation (11), one could alter-

natively choose a finite difference approximation of higher order (e.g. Grossmann and Roos, 2007), but these typically need

even more program evaluations. In contrast to AD, the finite difference approach requires the choice and tuning of the stepsize

t > 0 to achieve the desired accuracy of the derivative. Moreover, the optimal value of the stepsize will in general depend on10

the selected direction d and the state x (see Elizondo et al., 2002, for a comparison with AD). These issues render the finite

difference approach as quite unattractive but due to its simplicity it is often used, accepting all drawbacks of the method.

If f̂ is a linear function, then an arbitrary stepsize t can be chosen for all directions. For non-linear functions, t should be

as small as possible to achieve the desired accuracy but large enough to avoid cancellation errors due to the difference in (11).

AD has the advantage of not having to choose and tune a stepsize. Since the derivative of each elemental function is known15

exactly and AD applies the chain rule, the computed derivatives are accurate up to machine precision.

Moreover, using the reverse mode for computing the full gradient in case of only a small number of output variables, AD

has the potential of being several times faster compared to using finite difference approximations.

AD is introduced into computer programs mostly in two ways: Either through operator overloading or through source

transformation. For C++, the majority of tools (as listed at www.autodiff.org) use the operator overloading approach which is20

also used by the AD tool CoDiPack (Sagebaum et al., 2017a) developed by the authors from the Scientific Computing group in

Kaiserslautern and employed in this study. CoDiPack uses expression templates to reduce the amount of required information

for the reverse AD mode. The data layout of the information is such that a minimal memory footprint is required and caching

strategies of the processors can be applied. The general focus of CoDiPack is its application in High Performance Computing

environments which was successfully demonstrated in Sagebaum et al. (2017b); Albring et al. (2016).25

The source transformation approach is mostly used in Fortran source codes. Here, the code is parsed and new code is

generated which adds the additional statements for the forward or reverse AD mode. Tapenade (e.g., Hascoët and Pascual,

2013) is the most wide-spread tool for source transformations in Fortran. It is written in Java and supports nearly all features

of older Fortran standards. The support for more modern features in newer Fortran versions is an ongoing development.

In general AD can be applied to any computer program. After an initial effort, the derivative computations can be automatized30

in the sense that every change in the code will immediately affect the primal computation and also the derivative evaluation.

How much time the initial effort requires depends strongly on the code and which AD tool is applied. A general effort on

analyzing software and detecting problematic code constructs is done in Hück et al. (2015). In general, operator overloading

tools are usually quite easy to introduce into a code if it is well written and there is a distinct place where the computation type
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of the program can be defined. Source transformation usually require a much larger effort. In both cases an early introduction

of AD into the code reveals wrong implementation assumptions and yields a cleaner code.

3 The Warm Cloud Scheme

As an application for AD, we consider a slightly generalized one-moment scheme for warm cloud microphysics, i.e. liquid

clouds without ice, within a zero-dimensional air parcel framework. One-moment schemes are designed to predict the temporal5

evolution of the mass of non-sedimenting cloud droplets, rain droplets and water vapor, i.e. the mixing-ratios qc = Mc

Ma
, qr = Mr

Ma

and qv = Mv

Ma
where Mc is the mass of cloud droplets, Mr the mass of rain droplets, Mv the mass of water vapor and Ma

the mass of dry air. One-moment schemes have a long history and are governed by the classical partitioning of the droplet

spectrum into non-sedimentating cloud droplets and larger rain drops, which fall down due to the gravitational acceleration

(Kessler, 1969). Although these schemes remain the default choice in many computational models, for example, the operational10

numerical weather forecast models IFS (ECMWF, 2017), run by the European Center for Medium Range Weather Forecast

(ECMWF), and COSMO (Doms et al., 2011), run by the German Weather Service (DWD), much consensus exists that two-

moment schemes are in general more accurate (Igel et al., 2015). The difference between a one-moment and a two-moment

scheme is that the two-moment scheme does not only predict the evolution of the mass mixing-ratios but also the corresponding

number concentrations.15

The one-moment warm cloud schemes of the IFS and the COSMO model may be written in generic form as (see Rosemeier

et al., 2018; Porz et al., 2018)

dqc
dt

= c · (S− 1)q
1
3
c︸ ︷︷ ︸

Condensation

− a1q
γ
c︸︷︷︸

Autoconversion

−a2q
βc
c q

βr
r︸ ︷︷ ︸

Accretion

, (12a)

dqr
dt

= a1q
γ
c︸︷︷︸

Autoconversion

+a2q
βc
c q

βr
r︸ ︷︷ ︸

Accretion

(12b)

+
(
e1q

δ1
r + e2q

δ2
r

)
min(S− 1, 0)︸ ︷︷ ︸

Evaporation

(12c)20

+B− dqζr︸︷︷︸
Sedimentation

, (12d)

dqv
dt

=−c · (S− 1)q
1
3
c −

(
e1q

δ1
r + e2q

δ2
r

)
min(S− 1, 0) (12e)

with the coefficients c, a1, a2, e1, e2, d, the exponents γ, βc, βr, δ1, δ2, ζ and the saturation ratio S = pv

psat
, comparing the

partial pressure pv of water vapor to the saturation vapor pressure psat over a flat surface of water. The scheme includes the

following processes: (i) Condensational growth of cloud droplets; (ii) Autoconversion, describing the formation of rain drops25

by colliding cloud droplets; (iii) Accretion, describing the collection of cloud droplets by falling rain drops; (iv) Evaporation

and condensational growth of rain drops; (v) Sedimentation of rain drops out of the grid box. The term B subsumes the flux of

rain drops falling from above into the considered gridbox. The splitting of the evaporation term in (12d) is due to the appearance
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of the ventilation factor in the diffusional growth equation for the rain drops, taking a non-uniform distribution of water vapor

around the falling rain drop into account.

The major differences of Equations (12) to the actual scheme in the operational model are the formulations of the sedimen-

tation process as a sum of the incoming and outgoing fluxes B and dqζr , and the use of an explicit condensation term, which

is usually circumvented by employing a saturation adjustment scheme (Asai, 1965; McDonald, 1963; Langlois, 1973; Soong5

and Ogura, 1973; Kogan and Martin, 1994). Note, that the values of the coefficients may also depend on the environmental

conditions. Also note, that the formulation in (12) does not contain a term for the activation of new cloud droplets. Within the

operational models, the activation of cloud droplets is done with the help of the saturation adjustment, where the excess water

vapor is converted into mass of cloud droplets, thus always activating the maximal number if not restricted otherwise.

After choosing an appropriate set of coefficients and exponents, Equations (12) represent a cloud scheme for a warm cloud10

in the spirit of Kessler, although not every choice of parameters yields a physically meaningful scheme. Apart from the conden-

sation term, the parameterizations of the other processes are not based on purely physical reasoning. Rather the structure of the

terms represent in some sense ad-hoc formulations and approximations, but may also be motivated in the sense of population

dynamics. The values of the coefficients and the exponents are usually obtained by fitting to observational data or results of

detailed models (e.g. Khairoutdinov and Kogan, 2000). In any case, the precise values of the coefficients and the exponents are15

uncertain to some degree.

For simplicity, we consider the cloud scheme (12) within an adiabatic air parcel, providing a natural framework to start with

in the development of cloud schemes. The closure of (12) is given by the evolution equations for pressure p and temperature T

dp
dt

=− g

RT
wp, (13a)20

(cpa + cpvqv + cpl (qc + qr))
dT
dt

=−gw−Ldqv
dt

, (13b)

where g denotes the gravitational acceleration, R=Ra

(
1 + 1−ε

ε
qv

1+qv

)
the gas constant for moist air, Ra the gas constant for

dry air, Rv the gas constant for water vapor, ε= Ra

Rv
the quotient of the gas constants of dry air and water vapor, w the vertical

velocity and L the latent heat of vaporization. The coefficient c of the condensation is given by

c= 4π
(

3
4πρl

) 1
3

HN
2
3
c (14)25

with ρl the density of water, Nc an assumed constant number concentration of the cloud droplets and the thermodynamic

correction (Howell factor)

H =
[(

L

RvT
− 1
)

L

KT
+

RvT

Dpsat

]−1

(15)

for the condensational growth of a cloud droplet. In (15), K denotes the thermal conductivity of dry air and D the diffusivity

of dry air. Note that the choice of a fixed constant cloud droplet number Nc in (14) is motivated by the default Kessler-type30

warm cloud scheme of the IFS model (ECMWF, 2017).

8

https://doi.org/10.5194/gmd-2019-140
Preprint. Discussion started: 3 June 2019
c© Author(s) 2019. CC BY 4.0 License.



Table 1. Values of the coefficients and exponents used for the cloud scheme. All coefficients except e1, e2 are independent of the environ-

mental pressure and temperature. The values for the exponents are exact; the values for the coefficients are rounded to three digits. The

coefficient values displayed for e1, e2 are for environmental pressure 850hPa and temperature 270K.

a1 a2 e1 e2 d

1.842s−1 134s−1 −5.025 · 10−7 s−1 1.772 · 10−4 s−1 4 · 10−3 s−1

γ βc βr δ1 δ2 ζ

2.47 1.15 1.15 10
9

127
360

1

Using the notation introduced in Section 1, the combined discretization of the governing Equations (12) and (13) represents

the (mathematical) function f = f(y, η), taking the values of the foregoing timestep

y =
(
pold, T old, qoldc , qoldr , qoldv

)
(16)

together with the parameters

η = (a1, a2, e1, e2, d, γ, βc, βr, δ1, δ2, ζ) (17)5

to compute the state of the system at the new time-level, i.e. computing z = f(y, η). Implementing f yields the function f̂ ,

from which AD can compute the derivatives with respect to the parameters η.

4 Application of Algorithmic Differentiation

We implemented the air parcel model in C++ and discretized the ordinary differential equations using the classical explicit

Runge-Kutta method of order four (Hairer et al., 1993), although any other method could be used as well. We chose the10

values of the parameters according to the warm rain scheme used in the operational forecast model IFS (ECMWF, 2017).

In this case, all exponents are independent of the environmental conditions and only the coefficients e1, e2 of the evaporation

depend on the environmental conditions. Table 1 collects the values of the constant coefficients and exponents together with the

values of e1, e2 at pressure 850hPa and temperature 270K. Note that e1, e2 vary only weakly with pressure and temperature.

Prior to each timestep, we compute the values of the parameters e1, e2 for the cloud model using the environmental values15

of pressure and temperature from the old timestep. This fixes the values of the parameters for the call to the function f̂ ,

computing numerically a single timestep of the governing Equations (12) and (13). Using AD, we compute the derivative of

the implemented code f̂ with respect to the parameters (17) at the current timestep.

In the following, we always assume a constant vertical velocity w, the initial environmental conditions 270K and 850hPa,

the constant cloud droplet number density ρNc = 50cm−3 (as suggested in ECMWF (2017) over ocean), no infall of rain drops20

from above B = 0s−1 and the timestep ∆t= 0.01s. To arrive at a meaningful sedimentation rate, we adopt the assumption of

constant terminal velocity of the rain drops from ECMWF (2017) and assume an air parcel with height h= 1000m.

9
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Figure 1. Temporal evolution of the saturation ratio S (left panel), the cloud droplet mixing-ratio qc (middle panel), and the rain drop

mixing-ratio qr (right panel) for the ascending air parcel with no pre-existing cloud.

4.1 Cloud Formation in Updraft

As the first example we consider an updraft velocity w = 1m s−1, the initial conditions

(qc(0), qr(0)) =
(
10−10 kg kg−1, 0kg kg−1

)
(18)

for the mixing-ratios, and S(0) = 1 for the saturation ratio, integrated for 1950s. The reason of not choosing qc(0) = 0kg kg−1

is our neglectance of the activation mechanism, so we need a nonzero initial value for the cloud water mass in order to observe5

cloud formation; see also Equation (12a) which allows the constant solution qc = 0.

Figure 1 shows the temporal evolution of the saturation ratio S (left panel), the cloud droplet mixing-ratio qc (middle

panel), and the rain drop mixing-ratio qr (right panel). Apparently, the saturation ratio increases initially due to the adiabatic

cooling, until cloud droplet mass increased enough to balance the source for saturation ratio from the adiabatic cooling by the

diffusional growth of the cloud droplets. Since autoconversion is the only process to form rain, its formation starts after enough10

cloud droplet mass is available. The decrease in cloud droplet mass after about 900s may be attributed to accretion, i.e. falling

rain drops collect the cloud droplets and the rain drop mass increases. At about 1200s the saturation ratio starts to increase

again, since the decreasing cloud droplet mass diminishes the sink for water vapor due to their condensational growth. Note

that, according to Equation (12d), the evaporation term is inactive for supersaturated conditions with S ≥ 1.

The derivatives of the mixing-ratios with respect to the coefficients are shown in Figure 2, whereas Figure 3 shows the15

derivatives with respect to the exponents. As the upper left panel in Figure 2 shows, the coefficient with the largest sensitivity

for the cloud droplet mass qc up to about 1000s is the coefficient a1 for autoconversion (red curve). The large sensitivity during

the initial stage of the cloud evolution implies that the main loss of cloud droplet mass can be attributed to the autoconversion

process, rendering the autoconversion rate a critical parameter. Given that autoconversion is the only process to produce rain

drops out of the cloud droplets, this result may be anticipated. The negative value of the derivative ∂qc

∂a1
indicates a decrease in20

qc if one increases the value of a1 by a small amount, i.e. a larger autoconversion rate results in a faster decrease of the cloud
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Figure 2. Temporal evolution of the derivatives of the cloud droplet mixing-ratio qc (upper left panel) and the derivatives of the rain drop

mixing-ratio qr (lower panel) with respect to the coefficients. The upper right panel shows the derivatives of the rain drop mixing-ratio qr

with respect to the coefficients but without the derivative ∂qr
∂d

with respect to the sedimentation coefficient. All panels correspond to the first

case of an ascending air parcel with no pre-existing cloud.
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droplet mass. Inspecting the upper right panel in Figure 2, we observe a positive derivative ∂qr

∂a1
of the rain mixing-ratio with

respect to the autoconversion coefficient with the same magnitude as ∂qc

∂a1
. This simply resembles the mass continuity, since a

faster autoconversion implies a faster decrease in the cloud droplet mass qc and an equally fast increase in the rain drop mass

qr. The same is true for the accretion, i.e. the derivatives ∂qc

∂a2
, ∂qr

∂a2
(blue curves in the upper panels).

The derivatives ∂qc

∂e1
, ∂qc

∂e2
of the cloud droplet mixing-ratio with respect to the rain-evaporation rate coefficients e1, e2 as well5

as the derivatives ∂qr

∂e1
, ∂qr

∂e2
of the rain mixing-ratio with respect to the same coefficients are identically zero, being consistent

with the fact, that the evaporation term is inactive within a supersaturated cloud parcel, see Equation (12d). However, the purple

curve in the upper left panel, representing the derivative ∂qc

∂d of the cloud droplet mixing-ratio with respect to the sedimentation

coefficient, is not identically zero although the sedimentation term is absent in Equation (12a) for the cloud droplet mixing-

ratio qc. This is an example of an indirect sensitivity of qc to this coefficient: altering the sedimentation coefficient modifies10

the sedimentation rate which obviously directly affects the rain mixing-ratio qr. This in turn feeds back to the cloud droplet

mixing-ratio qc since the rain mixing-ratio qr enters Equation (12a) through the accretion term. We conclude that the AD

methodology is able to detect such indirect effects. Moreover, as may be concluded from the left panel in Figure 2, this indirect

sensitivity could easily be masked due to the comparable magnitude of the positive sensitivity ∂qc

∂d (purple curve) and the

negative sensitivity ∂qc

∂a2
(blue curve).15

The lower panel in Figure 2 shows the derivatives of qr with respect to all coefficients, in particular also with respect to the

sedimentation parameter d (purple curve; this curve was not included in the upper right panel). From this figure it is evident,

that qr is most sensitive to the sedimentation coefficient. Comparing the different scalings of the ordinate in the upper right

and the lower panel corroborates this result. To summarize, at the beginning of this simulation, the most sensitive parameter

is the autoconversion rate to create rain drop mass. Towards the end of the simulation, enough rain drop mass formed and20

the sedimentation becomes more important, actually much more important than the autoconversion or the accretion since the

derivatives ∂qr

∂a1
, ∂qr

∂a2
and ∂qr

∂d differ by almost four orders of magnitude.

Figure 3 shows the derivatives of the mixing-ratios qc, qr with respect to the exponents. For both mixing-ratios, obviously

the exponents βc, βr from the accretion process are most sensitive (blue and green curves).

Note that the sign of the curves is counter intuitive, because, e.g., positive values of the blue and green curves imply slower25

accretion after increasing the values of those exponents by a small amount. This behaviour is easily explained with the values

of both mixing-ratios being smaller than unity: increasing the exponent in the expression a2q
βc
c q

βr
r with 0≤ qc, qr < 1 leads

to decreased values of the expression a2q
βc
c q

βr
r and consequently to a slower accretion process. It is important to keep such a

behaviour in mind in interpreting the derivatives.

The second most sensitive exponent for the rain mixing-ratio is given by the exponent ζ from the sedimentation process,30

but only after enough rain drop mass has formed after about 1000s. The magnitude of the derivatives with respect to ζ and

the accretion exponents βc, βr are comparable and of opposite sign. Therefore, the influence of increasing these exponents

simultaneously may cancel out.

Observe that the derivatives of both mixing-ratios with respect to the exponents δ1, δ2 in Figure 3 are exactly zero, again

resembling the in-activeness of the evaporation term in Equation (12d) within the supersaturated cloud parcel.35
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Figure 3. As in Figure 2, but for the derivatives with respect to the exponents.
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same case as in Figure 2.
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As was already indicated, AD computes the derivatives of the implemented code, which in our case involves a numerical

method, rather than only the (unknown) continuous solution of the governing differential equation. Since the numerical dis-

cretization depends on the timestep ∆t, the magnitude of all computed derivatives also depend on the timestep. Figure 4 shows,

as an example, the derivative ∂qc

∂a1
of the cloud droplet mass on the parameter a1 for autoconversion for several timesteps. In

this figure, the dependency on ∆t becomes obvious, however, the shape of the curve does actually not change. Rescaling the5

curves in Figure 4 by multiplying the values of the blue curve by 0.1
0.01 = 10, the values of the green curve by 0.1

0.001 = 100, and

the values of the yellow curve by 0.1
0.0001 = 1000, all rescaled curves do coincide with the red curve (not shown), representing

the derivative computed with timestep ∆t= 0.1. The explanation of this effect is tightly connected with the numerical method

employed: we use a one-step numerical method to approximate the ordinary differential equation, hence the numerical solution

ynew at the new time-level is connected to the old solution yold at the old time-level by ynew = yold + ∆t ·Φ(yold, η), where10

η represents the parameter vector as in Equation (17) and Φ is the numerical method. As we compute the derivatives at each

timestep separately, i.e. the approximation yold is considered as independent of the parameters at the current time-level hence
∂yold

∂η = 0, the AD methodology factually computes the derivative

∂ynew

∂η
=
∂yold

∂η
+ ∆t · ∂

∂η

[
Φ(yold, η)

]

=
∂yold

∂η
+ ∆t ·

[
∂Φ
∂y

(yold, η) +
∂Φ
∂η

(yold, η)
]

= ∆t · ∂Φ
∂η

(yold, η).

(19)

Consequently, the computed derivatives are scaled by the timestep. We emphasize that this scaling property of the derivatives15

is a consequence of our choice of the numerical method and our decision to apply AD at the computation of each time-level

separately. Therefore, the scaling property might not hold true if one applies AD to compute the derivative of the whole

time-loop or uses another type of numerical method.

Although the magnitude of the computed derivatives depend on the timestep of the numerical method, the relative magni-

tudes of the individual derivatives are independent of the timestep. Table 2 highlights this observation by comparing the ratios20

of some derivatives of the mixing-ratios at t= 1000s, computed with several timesteps ∆t. The ratios of the derivatives shown

in Table 2 are indeed approximately constant (except for effects of a coarse time resolution), implying that these ratios are

indeed independent of the timestep. Therefore, the derivative with respect to the most sensitive parameter will show the largest

magnitude compared to the derivatives with respect to the other parameters, regardless of the chosen timestep of the numerical

method involved. This retains the possibility to use the computed derivatives to identify the most sensitive parameters of the25

cloud scheme.

4.2 Cloud Evaporation in Downdraft

As the second example, we consider a downdraft with velocity w =−1m s−1, the initial conditions

(qc(0), qr(0)) =
(
2 · 10−4 kg kg−1, 10−4 kg kg−1

)
(20)
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∆t ∂qc
∂a1

/ ∂qc
∂a2

∂qc
∂a1

/ ∂qc
∂γ

∂qc
∂a1

/ ∂qc
∂βc

∂qc
∂a1

/ ∂qr
∂d

0.1s 4.0228 −7.8577 · 10−2 −4.3450 · 10−3 3.6168 · 10−4

0.01s 4.0209 −7.8577 · 10−2 −4.3429 · 10−3 3.6148 · 10−4

0.001s 4.0207 −7.8577 · 10−2 −4.3427 · 10−3 3.6146 · 10−4

0.0001s 4.0207 −7.8577 · 10−2 −4.3427 · 10−3 3.6146 · 10−4

Table 2. Ratios of the derivatives of the mixing-ratios with respect to different parameters at t= 1000s, computed for several timesteps ∆t.

All numbers are taken from the computations of the first case of an ascending air parcel with no pre-existing cloud. The numbers are rounded

to four digits.
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Figure 5. Temporal evolution of the saturation ratio S (left panel), the cloud droplet mixing-ratio qc (middle panel), and the rain drop

mixing-ratio qr (right panel) for the descending air parcel with evaporating cloud.

for the mixing-ratios and S(0) = 1.01 for the saturation ratio, representing an initial supersaturation of 1%.

The temporal evolution of the saturation ratio and the mixing-ratios is shown in Figure 5. The downward vertical motion of

the air parcel causes the saturation ratio to decrease due to the adiabatic heating. However, until the complete evaporation of

the cloud droplets at about 175s (see the middle panel in Figure 5), the release of water vapor of the evaporating cloud droplets

counteracts the decrease of the saturation ratio and keeps the air parcel only slightly subsaturated (left panel in Figure 5). After5

roughly 175s, the saturation ratio decreases continuously, resulting in a substantially subsaturated air parcel. Consequently, the

available rain drops do not only sediment out of the air parcel but also evaporate due to the subsaturation (right panel in Figure

5). However, the release of water vapor of the evaporating rain drops is seemingly not able to counteract the decrease of the

saturation ratio as was the case for the evaporating cloud droplets at the beginning of the simulation, but the precise sensitivities

of rain drop evaporation and sedimentation cannot be deduced from the temporal evolution of the mass mixing-ratio qr.10

The temporal evolutions of the derivatives of the mixing-ratios with respect to the coefficients are shown in Figure 6.

Contrary to the first case from Section 4.1, the air parcel rapidly becomes subsaturated with S ≤ 1 and the evaporation process

in Equation (12d) is now active, hence no derivative is identically zero. Inspecting Figure 6, the most sensitive coefficient for
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Figure 6. Temporal evolution of the derivatives of the cloud droplet mixing-ratio qc (left panel) and the rain drop mixing-ratio qr (right

panel) with respect to the coefficients for the descending air parcel with evaporating cloud.

both mixing-ratios is e2 (yellow curve), corresponding to the ventilation coefficient within the formulation of the evaporation

process of the rain drops, see Equation (12d). This result may be anticipated regarding the rain drop mass mixing-ratio qr,

because the air parcel is subsaturated and the evaporation process directly affects the rain drop mixing-ratio. However, we

observe also a large sensitivity of the same parameter on the cloud droplet mixing-ratio qc. This feedback is, again, an indirect

sensitivity originating from the accretion process: if the rain drop mass decreases faster due to a slight increase of the coefficient5

e2, the accretion gets slower and therefore less cloud droplets get collected by the falling rain drops. Consequently, the decrease

of cloud droplet mixing-ratio is diminished.

The right panel in Figure 6 also shows that the second most sensitive coefficient for qr is given by the sedimentation rate

coefficient. This observation also answers the question which process is more sensitive to changes in its rate coefficient for

the decrease of rain drop mass, seen in the right panel in Figure 5. Due to the larger absolute values of ∂qr

∂e2
compared to ∂qr

∂d10

(purple curve in the right panel in Figure 6), a slight change in the evaporation rate coefficient e2 will result in larger responses

than a change in the sedimentation rate.

Although not visible in the left panel in Figure 6, the derivatives with respect to the coefficients a1, a2, d are all of about the

same magnitude, while the sensitivity to the second evaporation coefficient e1 is significantly smaller.

Inspecting Figure 7, illustrating the derivatives of both mixing-ratios to the exponents, the most sensitive exponents for the15

cloud droplet mixing-ratio qc are again the exponents βc, βr corresponding to the accretion process (blue and green curve in

the left panel). For the rain drop mixing-ratio qr (right panel), the most sensitive exponent changes from the sedimentation

exponent ζ (cyan curve) at the beginning to the exponent δ2, occurring in the second term e2q
δ2
r of the evaporation term, being

consistent with the large sensitivity of the corresponding rate coefficient e2, see the yellow curve in the left panel of Figure 6.
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Figure 7. As in Figure 6, but for the derivatives with respect to the exponents.
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Figure 8. Difference between the reference run with unperturbed coefficient e2, denoted as qx,1 for x ∈ {c, r} and using the perturbed
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rain mixing-ratio (right panel), respectively.
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To summarize the second example: the AD methodology pinpoints the second summand e2qδ2r of the evaporation term

together with the exponents βc, βr of the accretion process to introduce the largest sensitivity in the model results. Although one

could find the same sensitivities using classical sensitivity studies instead of AD, the AD methodology provides an immediate

hint on, e.g., the sensitive coefficient e2 for both mixing-ratios, see Figure 6, without having to carry out multiple model runs,

where one perturbs each coefficient of the cloud scheme separately, one after the other. Moreover, the sensitivity of the cloud5

droplet mixing-ratio qc to e2 is indirect, rendering it difficult to spot this sensitivity directly using the ensemble approach, in

particular because the governing Equation (12a) provides no hint due to the absence of coefficient e2. Given that even the

simple cloud scheme (12) already contains five rate coefficients, perturbing each coefficient within a separate model run results

in a significant total number of runs.

After the identification of the most sensitive parameters using AD, one can carry out further model runs, targeted at the10

parameters which were identified beforehand. Figure 8 illustrates a possible further analysis step. It shows the difference

between an unperturbed run, denoted by qx,1 with x ∈ {c, r} and two further runs with perturbed rate coefficient fe2 instead

of e2, where f ∈ {0.9, 1.1} is a scaling parameter. Observe that the signal is consistent with the derivative, computed by AD,

in Figure 6: the derivative ∂qr

∂e2
is negative, hence a slight increase of the coefficient should result in a smaller rain mixing-

ratio qr and, consequently, the difference qr,1− qr,1.1 should be positive. Similarly, the derivative ∂qc

∂e2
is positive, hence a15

slight increase of the coefficient should result in negative values for the difference qc,1− qc,1.1. Figure 8 shows exactly these

tendencies (blue curves). The red curves show the resulting differences using the scaling parameter f = 0.9; note that the

curves are not symmetric to each other.

4.3 Dependency on the Model Trajectory

After having discussed both exemplary cases individually, we now point at another important aspect of the AD methodology.20

Given that AD was applied to the exactly same computational code, a comparison between, e.g., the derivatives of the cloud

droplet mixing-ratio qc with respect to the rate coefficients (see the upper left panel in Figure 2 and the left panel in Figure

6) reveals that the corresponding curves are not equal to each other, but show a significant different behaviour. The only

difference between both examples were the values of the initial conditions. Consequently, the model trajectories between both

runs evolved differently despite the fact that the computational code was unchanged. This observation is a crucial aspect of25

the AD methodology since it underlines that AD computes the derivative of the model, i.e. the computational code, along

the particular model trajectory, rather than providing the derivatives for each possible state of the model. Therefore, the AD

approach can provide the desired sensitivities for the particular evolution of the model state, posing the same limitations as the

computation of the derivatives using the aforementioned finite difference approach.

5 Conclusion30

In this study, we presented and applied the technique of algorithmic differentiation (AD) in the context of cloud schemes,

representing an important example of a subgrid parameterization of numerical models within the atmospheric sciences. In
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the literature, many different cloud schemes are suggested since at the moment, a universal governing equation for the full

description of a cloud is not available (in contrast to the Navier-Stokes equation for the description of a non-reacting flow),

making it not possible to derive cloud schemes from a common universal basis. As a consequence, many ad-hoc assumptions

are made within the formulations of the cloud processes typically leading to the introduction of uncertain parameters.

We propose the use of algorithmic differentiation in the development of cloud schemes in order to identify the most sensitive5

parameters in the adopted formulation along the simulated solution trajectory. The AD methodology is based on the observation

that each computer code is a large composition of only a few differentiable elemental operations, hence, by the chain rule, the

code itself is differentiable. Since the derivatives of the elemental operations are known, the full computational code can be

differentiated in a (semi-)automatic fashion. Moreover, the resulting derivatives are accurate to machine precision because the

AD approach merely evaluates the exact derivative.10

In the context of sensitivity studies, the AD approach yields the desired sensitivities of the parameters on the result of the

computation requiring only a constant additional computational effort. The forward mode of AD roughly doubles the number of

code instructions since each statement is complemented with its derivative, hence also roughly doubles the code execution time

for each run. The reverse mode introduces more overhead than the forward mode, but the amount is independent of the number

of input variables, among which are also the parameters to be investigated. Therefore, the reverse AD mode has the ability15

to outperform the forward mode in case of many input variables but only a small number of output variables because only a

single run of the reverse mode is required to establish the derivatives with respect to each input variable, whereas the forward

mode requires as many runs as the number of input variables. The fact that AD introduces only a constant computational

overhead is especially useful if the number of parameters is comparably high, since establishing an ensemble to investigate the

sensitivity of the parameters quickly results in a high number of model runs. Moreover, using an ensemble of model runs to20

study parameter sensitivities additionally involves a thorough post-processing of all model output. In contrast, the AD approach

clearly spots the parameters with high sensitivity, regardless if the sensitivity is direct or indirect, and allows to focus a further

post-processing on only the relevant parameters.

AD helps in computing the derivatives, but one has to keep in mind that these derivatives do not (necessarily) coincide with

the derivatives of the exact solution of the differential Equation (12), (13) with respect to the parameters, since AD computes25

the derivative of the implemented code. This also explains the dependency of the magnitudes of the derivatives, computed by

AD, on the timestep: the implementation involves a numerical method to approximate the desired exact solution, hence also a

timestep ∆t.

We emphasize that the technique of AD is not restricted to a specific programming language nor to the analysis of cloud

schemes. It is a generic technique which may help in the development of any (subgrid) scheme for a (geophysical) numerical30

model by providing informations about the sensitivities of the involved parameters.

In adopting a cloud scheme or any subgrid scheme, the question of how the inherent uncertainties of the scheme influence

the (numerical) solution of the model arises. In the context of the topic of this study, an example of the influences of a single

parameter within a typical cloud scheme on the overall cloud development is discussed in Igel and van den Heever (2017a, b,

c). Answering the question how uncertainties within a given model propagate is a highly non-trivial task. As already indicated35
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in Section 1, methods from “Uncertainty Quantification” allow to assess this propagation (e.g., Sullivan, 2015; Le Maître and

Knio, 2010), but taking many parameters simultaneously into account is challenging and computationally expensive. Algorith-

mic differentiation allows to first identify the most promising parameters influencing the result of a given parameterization,

e.g. a cloud scheme, and limit the more extensive investigation to these, see Chertock et al. (2019) for an example. However, as

AD by design computes the derivatives along the numerical solution trajectory, one might not detect all possible sensitivities,5

but at least the most sensitive parameters in “typical” situations.
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